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MAGNETOHYDRODYNAMIC WAVES IN A PLASMA SLAB

Elisabeth A. Cooper

1. Introduction

A study has been carried out on the propagation of magnetohydrodynamic
waves in a plasma bounded by a vacuum or a neutral gas, in order to improve
understanding of the propagation of these waves in the magnetosphere and their
characteristics as observed on the surface of the earth.

For simplicity a two-dimensional problem, consisting of a magnetized
plasma bounded by two planes, is considered here. Previous relevant work
is discussed in Section 2 and the basic equations and boundary conditions are
derived in Section 3. In Section 4 expressions are found for the field variables
of waves in a plasma, a vacuum and a neutral gas, and in Sections 5 and 6 these
waves are matched at the plasma boundaries. The plasma waves separate into
principal modes which may propagate in the plasma without inducing any ex-
ternal fields, and modes labelled TE which generate fields outside the plasma.
Under the requirement that the waves outside the plasma should be outgoing or
damped a consistency condition is obtained which, together with the dispersion
relation, determines the possible TE modes. [t is shown that for these modes
propagation is only possible for a limited range of values of “/k, the phase
velocity along the plasma slab.

These results show that the waves which may propagate in a bounded plasma
must satisfy more stringent conditions than waves in an infinite plasma, and that
it may be necessary to use bounded plasma theory in interpretation of magneto-

hydrodynamic wave observations.



2. Previous Work

It is well known that the types of waves which may propagate in a magnetized
plasma vary with the ratio of the wave frequency w to the plasma frequencies and
the gyrofrequencies. We are here concerned with waves having frequencies much
less than the ion gyrofrequency w .j, so that terms of the order of “/w ci may be
neglected. This is known as the magnetohydrodynamic frequency range, and a
general discussion of magnetohydrodynamic waves may be found in FERRARO
and PLUMPTON (1961). Many authors have considered the propagation of these
waves in infinite media, their reflection at an interface between two semi-infinite
media (PRIDMORE-BROWN, 1963), their excitation by an incident electromagnetic
wave (TURCOTTE and SCHUBERT, 1961) etc. The propagation of these waves
in the magnetosphere and ionosphere has been discussed by FEJER (1960),
MACDONALD (1961), and KARPLUS et al {1962), among others, but without
inclusion of any possible guided waves.

Previous work on the modes possible in bounded plasmas has often been con-
cerned with the high frequency range which is important in laboratory investiga-
tions of plasmas. For instance DAWSON and OBERMAN (1959) investigated the
possible modes in a plasma slab and a cylinder under the assumption that the
ion motion was negligible. BERS (1963) considered in great detail the propaga-
tion of waves in plasma wave guides, but mentioned only briefly the magneto-
hydrodynamic limit of his results, referring for more details to NEWCOMB
(1957) and GAJEWSKI (1959).

NEWCOMB (1957) considered the problem of magnetohydrodynamic waves
propagating along an axially magnetized circular cylinder of infinitely conducting
plasma bounded by conducting rigid walls. He assumed that the plasma particle
pressure was much less than the magnetic pressure and included particle pres-

sure effects only through a perturbation treatment. Three types of modes



appeared, named TE (transverse electric), principal and sound-like respectively.

The effects of a finite plasma conductivity were discussed briefly by NEWCOMB,
and in more detail by SHMOYS and MISHKIN (1960), who identified the principal
modes as the limiting form of TM (transverse magnetic) modes.

LUDFORD (1959) discussed resonant magnetohydrodynamic waves in an
infinitely conducing plasma confined in a rectangular cavity with conducting
rigid walls. His solutions separate into two sets, one of which could be named
principal modes and the other of which appears to be a combination of TE and
sound-like modes.

GAJEWSKI (1959) considered magnetohydrodynamic waves in a cylinder of
arbitrary cross-section with generators parallel to the constant magnetic field.

He used the general boundary conditions

av|, =0 mxv| =0

C C

where n is the unit normal to the wave-guide boundary C and v is the velocity,
arguing that the solution in any particular physical situation is an appropriate
combination of these two sets of solutions. For either boundary condition the
solutions divide into "inhomogeneous'" modes, which correspond to NEWCOMB's
principal modes, and '"homogeneous' modes which are either longitudinal (L),
transverse and longitudinal acoustic (TLA) or transverse and longitudinal mag-
netic (TLM). The L and TLA modes correspond to NEWCOMB's sound-like
modes, and the TLM to NEWCOMB's TE modes. GAJEWSKI discussed briefly
the form taken by these modes for rigid, perfectly conducting walls and for rigid
insulating walls.

GASJEWSKI and MAWARDI (1960) extended these results to a cylindrical
cavity with rigid ends and found the possible resonant modes, which consisted

of a set of principal modes, and a set of combined TLM and TLA modes, in



agreement with LUDFORD. This combination arises because a TLA or TLM
wave reflected from a boundary excites both a TLLA and a TLM reflected wave
unless the constant magnetic field is parallel to the boundary (PRIDMORE-
BROWN, 1960).

WOODS (1962, 1964) considered the possible modes in a cylindrical wave-
guide with rigid walls which could be either conducting or insulating, and in-
cluded the effects of neutral gas collisions and of viscosity and finite con-
ductivity. In his 1964 paper particular attention is given to the boundary con-
ditions when the plasma has large but finite conductivity and the walls are
insulators.

In summary, the general types of magnetohydrodynamic waves which may
exist in a cylindrical wave guide of arbitrary cross-section have been determined,
but applications have been made generally to wave guides with rigid walls, as
required for laboratory experiments, and little attention has been paid to the

form of the fields generated outside the wave guide.

3. Basic Equations and Boundary Conditions

We consider a fully icnized gas in the presence of a static magnetic field,
bounded by a vacuum or a neutral gas. Within the plasma we assume infinite
conductivity, zero viscosity and a scalar pressure p; p, v, @, andldenote the
material density and velocity, the charge density and the current deunsity, and

E and B are the components of the electromagnetic field. The basic equations

are then
vxB =T g B (1)
V.B=0 (2)
VxE = -3 2 (3)




V.E = 4no (4)

9
s+ V. (pv) =0 (5)
p%=—7p+cl‘_3+%_j_x§ (6)
E+svxB =0 (7)

In addition as equation of state we use the adiabatic law

1 dp _ y d
5a& - pat (@)

In a vacuum p =0, p = 0 and equations (1) - (4) are valid with j = 0,
o = 0.

In a neutral gas equations (1) - (6) and (8) are valid with j = 0, ¢ = 0.

The plasma boundary is assumed to have zero thickness and to contain
possible surface charges and currents., We are thus neglecting the various
skin depths such as the ion Larmor radius (STIX, 1962, pg. 72) which would

appear in an exact theory.

Let n denote the unit normal at the plasma boundary, directed into the

o

e < oo
plasma, and let ¢™, j denote the surface charge and current deusities

respectively. By integration of equations (1) -~ (4) across the plasma boundary

the following boundary conditions may be obtained (KRUSKAL and SCHWARZSCHILD,

1954; STIX, 1962, pg. 73)
EX(EP - _Bv) = _%lr._j.* - }El (‘_E_P - E

—_ Cc
n.(8°-B") =0

(9N

nx (EY - EY)

)
alc
'®
g
w

!
o

(P - EY)

is



where
u=2.\_/_p=1_1_.zv (10)
and the superscripts p and v refer to the plasma and vacuum (or neutral gas)

quantities respectively.

Equations (5) and (7) add nothing, but equation (6) gives

* P v si¢ P v
< X(E‘;—§>+ 7 (—3_21_5_) -n (P -p") =0 (11)

In addition it is easily shown that
57— = n x (n x Vu) (12)

For a vacuum pv =0, and Xv is undefined. Boundary conditions (9) -
(12) are quite general and apply to any motion of the plasma. They simplify
considerably when applied to a static plasma undergoing small perturbations.

LetB = By + Bjs P =Py ¥ P P = g+ ppp R =R, 41, ¥ = v, and
and_]*; = _]:31, where —]?’o’ Por Po a.nd_r_lo are constants in either medium. To

zero order equations (9) - (12) become

n x(BP -BY) = 4T ;%
—0 —0 —0 c =0
p v -
n . (B -B) = 0 (13)
1, % B + BY _ P _ vV
= J, x(—o 2—0) = n, (p; - P)
£
o, = 0
u =0
o
From these we deduce that

either p v b v o

—]?’o=]éo’po=po"]o=0 (14)



or n B = n .BY =0
—_0 -0 -0 -Q
2
P vy 2
pP 4 (B2 v . (B)
o 8w o 8t

For a plasma-vacuum boundary it is impossible to satisfy (14) if
pc}: # 0, and equations (15) must therefore apply. For a plasma-neutral
gas boundary either equations (14) or (15) may apply.

To first order equations (9) - (12) become

B, x (B - B)) + m =B -B) =F 4"
Bo - (B - B)) +n . (BY - BY) = 0

n, % (B} - Ep) = & (B - B

o - (E - B = 4wy

1, % BP
T 4 x(_o

P _ \"2
M TN

x (Eo x Vuy)

- T 5

If equations (14) hold and n, . By # 0, these equations simplify to give

P _ v
B = B

v
Py = Py

P _ v
By * B = omg x B

v o

n, - (B[ - B)) = 4noy
FURE-SET S N
anl
Bt T Do x{n, x V)

\ % v - P
; —°>+ -}5__10 x(Ei);§1>_fo(P;i—pp+n1(Po

(15)

v
-R,)

(16)



: P _ _ )
whereas 1f£0 . -I::’o =n . B = 0, we obtain
P _ _ p
~o El - - Eo
v o_ v
.r_lo M El - 2]_ * .Po
P v v
B B B
pP + =0~ =1 = pY 4 Zo ' =l
4 ° 4
17)
P _ Vv u P _ Vv (
B, x (Ey 5) = Tl (BS B,)
P _ v i
n, - By - B) = 4noy
= P _ v
Y "4 T -
on
—1 =
—5 n_x (20 x Vul)
4, Waves in a Plasma, a Vacuum and a Neutral Gas
We now consider the propagation of small perturbations along a plasma
slab bounded by the planes x = 0,a. This plasma slab may be regarded as a
cylindrical waveguide having rectangular cross-section of infinite width.
Expressions are to be obtained for the field variables corresponding to the
possible magnetohydrodynamic waves. Substitution from (13) into the plasma
equations (1) - (8) yields the first order equations
v BP = 4m .p + 1 a—Elp
*5 T ¢cdh To e
P _
v . El = 0
vV x EP = - _i'_ ﬁ
-1 c ot
V. E = 4nol (18)
5 P
P1
P P _
ot P v J10° 0
P
P ovi _ p 1 P P
o 5 = VP T 4 x B



P 1 P P _
E +cyf =B} =0
18) cont,
P p (
1oy o7
pp Bt IR T:
o
We assume that I_S_OP is directed along the z-axis
P
= P
B =(0, 0, B)
and that 58-};- = 0, i.e. that all propagation is in the z-direction.
In component form, dropping the subscript 1, equations (18) may be
written as
P
EP - .Bo P
x C vy
gP - Ba P
y ~ ¢ x (19)
E = o0
z
p P p
jp - . 4c BBY n B, avy
x w 0z 4nc ot
< o8 9B > Be oy,
P _ ¢ p v
Iy 7% oz T TOx = Znc ot (20)
P
P _ ¢ 9By
Jz T 27 ox
P P
9B, _ BP v
ot Dz
P
0By, - pP aJ; (21)
ot dz
P
BBZ - . gP avﬁl l
K ° %
P P p
1 ap ov, + Ovy  _ 0 (22)




p P P P p 2 P
vy _ 1 op B GBX 8B, (Bg) ov.
5 T pP Bx ' FmpR \Bz ~ Bx . _4_—Q_—Zﬂppc T

(o]

P p P 2 P
avy _ By 08By (B2 )" avy
8t 4mp> Bz 4mpP ¢ ot
ovo _ 1 8pP
ot ;F oz

o
Our variables separate into two independent sets (V}? , B:: ) and (pp, v£
vP, BP, BP).
Z X z

For the first set, from equations (21) and (23)

<o
I
(=]

2 2
2,2, @ 2 8
1+ Va9 e -V ] vP, B
[( A leT) o2 A s | vy

where
p 2
v .2 . (Bg)
A Zw;&‘o
is the square of the Alfven velocity. In general VAZ/CZ <<1 and is often
neglected. [t appears here through the inclusion of the displacement current

in equation (1). For brevity we write

-1/2
RN (R AT

The solutions for vf: , B;’ , and, from (19) and (20), for EE , ji, and
jp have the form
z

= f(x) e—iw[t - z/VA'_-J

vP =
Yy
P _ _RxP —iw|t - z2/Va!
By = Bo /VA' f(x) e [ ]
Exp = - Bg/c f(x) e lw E_ Z/VAI:I
. p
. P _ iwc Bg -iw E-- z/VA_j
¥ T ARV aZ f(x) e .
P .
jj[; _ - _¢Bs £1(x) e-lw[t - z/VA 7]
41TVA'

10

(23)

(24)



where f(x) is an arbitrary function. The remaining variables are all zero for
this set of modes which we call principal modes (NEWCOMB, 1957). Both the
velocity and the electromagnetic components of these modes are transverse to
the direction of propagation, and all the modes propagate at the modified Alfvén
velocity VA'.

The remaining solutions are given by setting vg = B}I: = 0, and using
equations {21), (22) and (23). Elimination of pp, and B}I: and BZp from these

equations gives

2. p 2.p 2. p 2.p
2 8 vx - A 9 vy 97V, 2 9"v o"v
1+v/) co o+ a ) ev (2% ¢ 2 e
ox ox0z ox oz
8%y P 2 [8%P a%vP
L% = ¢ 9 Vx| __Zz_
ot% 8xdz 9z
where
2 P
c - XPo
o P
Po
is the square of the acoustic velocity.
Hence
(vt 2 el iy ey o ]
A ot 822 c azz ote
+ c 2V )
o A P
P P =
(vx » v, ) 0

Thus solutions of the form
ei(kz - wt + rx)
exist where

2 2. 2.2
(1 ¥ Va /C2>w4 - iEC°2 %) (k24 rd) 4 C—Ol%—k—:l Wt e BV 2 K% (P 4 2% = 0 (29)

[of

11



The two roots of this equation for wz correspond to the slow and fast magneto-
hydrodynamic waves. One root is sometimes called magneto-acoustic since it

becomes a sound wave in the limit %[-& —>» 0.

o
From (25)
2 [6 + VA2/°2> o® - v kz] [;2 - Coz kz]
ro o= Z..2,v2 vZ 52 (26)
i (Co VA ) - o 'a
Thus r = 0 when wz = VAZ k2, co2 kz. For real wand k, r is real if
a) <,..)2/k2 > maximum [coz, VA 2
or
2 2,,2 cc>2 VA2
b) minimum [ A > w/k® > ———
<o + VA

For all other positive values of wz/kz, r is pure imaginary.
The values of the field components corresponding to solutions of (25) are

as follows, where Ar is a constant:

' . » (k2 -t
i (t -2/VA") +z (A_e 1r’x+A_re 1rx)el( z -wt)

P _

Vx - Aol r#0
: 2 . . .

+P - A o lo(t -z/co) - krcg (A elTX _ A omirxy oi(kz -wt)

z oz rfo 2 c?2 2 -r

W -c] k
s P . _BEY . _-ie(t-z/Vy) _ BY k (A elT%) 4 omirx ilkz -of)
X Va ! ol w T -r
r+0

B P = Z BQpr (A eirx_ A e-irx) e'1(kz - wt)

z £70 W T -r

P B -iw(t —Z/V '} =2 irx ~irx, i(kz -wt)
E = Z0 A +; _D__(A e + A e ) e

y c 01® -r
P = ¢ pP A, o iw(T —z/co) 2 rwpo Q (A RE= SN e-irx) ollkz ~wt)

oFo 0z® —Co r -r
. P .
. p iwBg ¢ -ie(t -2/ Vi)
Jy - 4wV, Ao]e
R o) . . . _
N _lg_o_ (wz —czkz—czrz)(A elrx | A e-—lrx)el(kz wt)
5 TWC r -r

(27)

12



.

We call these modes transverse electric (TE modes), since for r # 0 the

magnetic field has a longitudinal component sz' These modes include Newcomb's

TE and sound-like modes. Note that the mode for which r = 0, mz = VA k2 has

only transverse velocity and electromagnetic components, while the mode for

which r = 0, wz = co2 k2 is a pure acoustic wave,

The electromagnetic waves in a vacuum or a neutral gas satisfy equations

1) - (4)withj =0, ¢ = 0. If 4 = 0, these equations separate into two sets
i By q

for (E V. E V. B v), and (E vV, B V. B V) which have solutions
x z y y x z
EV = Cei(kz -wt + ax)
< =
EY - % Cco i(kz ~wt + ax) 128)
z k
BY - W Cei(kz—wt-{—ax)
y ¢k
and
EV - Dei(kz—wt+o.x)
Yy
BY - _c&Dei(kz-mt-} ax) (29)
X w
BY - ¢ pe i(kz -wt + ax)
zZ
where C and D are constants and
0l = Wl -k? (30)
In the neutral gas acoustic waves may propagate in addition to electro-
magnetic waves. These waves satisfy equations (5), (6), and (8) with j = 0,
o =0, To first order these equations may be written
v
1 pr _ Ovy ov, "
— = e X
YPo ot ox z
Bvy = - 1 9p"
ot p OV ox
ov,. = - 1 ap"
ot |:)ov oz
13
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and have the solutions

pv = de i(kz -wt + Bx)
vV o= Ev dei(kz -wt + Bx)
x wp, (31)
¢V o= k dei(kz-wt+ﬁx)
z v
wpg

where 4 is a constant and

B2 = ¥ ? - x° (32)

The signs chosen for a and § in solutions (28), (29), and (31) depend

upon the requirements of the problem.

5. Modes in a Plasma Bounded by a Vacuum

We now assume that the regions x> a, x < 0 are vacuum regions, and
apply the boundary conditions obtained in Section 3 to match the magnetohydro-
dynamic waves with the vacuum waves,

The unit normal to the static boundaries is

0
no = (+1, 0, 0) onx-=

- =3

(33)

Since pop t 0, boundary conditions (15) must be satisfied. Therefore

BP =8"Y = 0,
ax ax 2
vy _ P P
(Ba) = 8mp, +(Bo)

We have already chosen

BP = (0,0 BP
—0 o]

For simplicity we choose Eov parallel to Eop

1/2
QOV = (o, 0, [8npcf’ + (BE)?] > (34)

The plasma particle pressure 1s thus supported by additional magnetic pressure

1k



in the vacuum.

The first order boundary conditions are obtained from equations (17).

i(kz -wt)

For variations of the form e on x = fig these become

= P
W= i vy
p
n, = (0, 0, + k“;x
BP = - kBop v P
w x
v
B = - .EEQ_ v P
X w
P v
P B p _ B v
Pt ZQ'IT_ B, = T B,
EP.EY =0
z z
P_nV
E b - Ev = (BO BQ ) Vp
y y c x
Using equation (19) for Eyp and Eyy , and noting from (21) that
- P -
BP -~ kBa o p throughout the plasma, and from (29) that B_® = ck gV
x w X X w y
throughout the vacuum, we see that these conditions reduce to
EY =0
z
v
E v = EQ_ v P
y C X (35)
P P rP
Bzv - 4wp” + B_ B
BY
o

on x = 0, a.
The principal modes of equations (24) and the TE modes of equations
(27) are to be matched to the vacuum modes of equations (28) and (29), under

the requirement that the vacuum waves are to be outgoing or damped. There~

fore in the region x > a the sign of a must be chosen such that if mz/k2 > c2,

a > 0 while if mz/k2 < CZ, ia < 0. Under this sign convention the electro-

kz -wt + ax)

magnetic waves in the region x> a vary as e » while those in

15



the region x < 0 vary as oikz -ut

For the principal modes

P _ P _pgP
v, = P = BZ
throughout the plasma. Therefore
EY=E' =B
z y z

-ax)

= 0
on x = 0,a, from (35)

=0

From (28) and (29) for the vacuum fields we see that this implies

= 0

E' = E’ = B
x z y
since (12 = mz/c2 -k2 + 0, and that
g - gY = gY
y x P

Thus there are no electromagnetic waves 1n the vacuum associated with the

principal modes.

Let

f(x) =

> 6

where a, and bn are arbitrary constants.

written as

sm— + b cos

nnwx nwx )

The principal modes may then be

10}
v P - Z <a sin 2% + b_cos rﬁ) Eiw(T "Z/VA')
- n a n a

y
o)
BPY = _Z Bf (a sin 20X 4 b cos 2% > e~ ot -2/ V4"
=0 AV a n a
A
@ b
B -3 - '
E}I: = —Z Q (a sin ———nZX + b cos n——T;X) o~ et Z/VA)
n=0 (36)
< P
jXP - lwc Bg (a. sin + b cos n1rx> e-iw(t -Z/VA')
A= 417 Y 2 n n a
A
o) P .
P _ cB nw nw nm -iw(t -z/V, !
1, = Z 4“6A' - (a. cos —— — b _ sin T)'() et A')
n=0

16



for 0 < x < a, while El = 0, El = Ofor x>a, x<0.
Next we require the vacuum fields associated with the TE modes in the

plasma.

Since EZV = 0Oon x - 0, a, from (35), we see from (28) that

EY=rY=8"=0
y

throughout the vacuum unless wz = czkz. Since boundary conditions (35)

place no restrictions on EY and B ; any field of the form
X y

v Ce--iw(t-z/c)
x
E’ =0
Z
Byv - Ce -iw(t -z/c)

may exist in the vacuum regions without affecting the plasma fields.

The values of E;’, B;i, and BZ are more strictly determined. Consider
fir the region x > a. From (27) and (35) we find thaton x = a
v . : . v .
eV - Bo A e—1w(t _Z/\Q\l) _ A eiT2 5 oird Bg e1(kz -wt)
% c ol L r ~-r c (37)
and

2

. 2, 2 2 2 2
BV - amcopd A e—lw(t -z/cg) +§ drpb r I:’ (co + VAT) -c VAzk
BE o2 v P
o r#0 wBO W -C k

o-iray i(kz ~ot) (38)

T -r

From (29) the vacuum fields for x> a may be written as

v “iw(t -2/V, '} +ia ,x —iw(t - i
EY = DOl e ( A) ol + Doze iaf z/CO) + ta ¥
L Z} Dr o i(kz -wt + arx) (39)
r#0

and

17



BY = S%a p o lwlt -zfVA') + ia g x cags D o~ luft -z/cg) +iagax
z W ol + w o2
+ Z car o ilkz -wt+ ay x) (40)
r#0 ¢ r
where
2 _ 2 2
Co1 T @ /VA
2 2 (1 1
a =0 [ -—
ol . COZ )
arz = u)z/cz —kz
and the constants Dr are to be determined. Comparison of coefficients of
oilkz —wt) a, from (37), (38), (39), and (40) then yields
Dol = 0
D,, = 0 . (41)
_ Bg (A QT2 L A e-xra)e—1ura
r c r -r
and for consistency
Aol = 0
Agp = 0
AT o7ir2 L L2 %iv 3y Jc? v %k
-r = o A o A 42
A o2 _ A -ira v 2 2 ZkZ (42)
e -A_L a Vay W -cg
where

2
2 v
Wl = 8 anef

We have thus shown that the two TE modes given by r

= 0 cannot propagate
in the plasma-vacuum system, while the modes for r # 0 are subject to the re-

striction of equation (42).

When the matching process is repeated for the x = 0
boundary, the field in the vacuum region x < 0 becomes

18



v .
Y = Z Bgo (Ar+A_r) e1(kz - wt —u.rx)

b ¥790 € (43)
etc., while the consistency condition for this boundary is
2 2 2 2 2.2
T (o GO /N -czo \;A k] 44)
2 2
Ar —A_r arVAv w” —cg k
Combination of {42) and (44) yields
A Zeira = A Ze—ira
r -r
We therefore set
P -ira/2 _ P ira/2
R TR (45)
where P. is a constant. Egquation (42) (or (44)) may then be written as
- 2, 2 2,2
tan ¢ VAV (w ~ %o k") 46
Tleot T ZeZ v s e 22K v
@ % A o A
which, together with (26), determines the possible propagating modes. From
(26) we see that for real w and k, r is either real or pure imaginary, and
r {t:nt} ra/2 1is therefore always real. Consistent solutions of (26) and (46)
-Co
are thus only possible if a_ is imaginary or zero, i.e., if
wz/kz < CZ
The fields corresponding to these transverse electric modes are as
follows:
Within the plasma, for 0 < x < a,
r#0
2 - .
P _ Z rkeg” { 1 sin -a/ } ilkz -ut)
v = — P r{x -a/2)} e
z £0 wz_cozkz r Ccos (47)
P _ P cos _ Hkz -wt)
Bx _Z Bg k pr{isin r(x a/Z)}e
rz0 w -
p ; i -
BPZZ rB p dESIN L ar2 o ikz ~wt)
Z rfO w T CcCOs
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isin

P .
EP - Z By {cos_ r(x_a/z}el(kz -wt).
. C r )1 sin
r#0
p. 2 T .
P - rwps € i sin i(kz -wt)
P = Z 2 222 Pr {cos r(x -a/Z} © (47)
r#0 w -cg k cont
TF

) R .
iB 2 2.2 2 cos i(kz -wt)
0 ——9_41'rwc (w -c“k“+r ) P, r(x —a/Z)} e

In the vacuum region x> a

ijkz -wt + (x -a)
B.Y i} fos ra/Z} eE( w ey ]

EY = Z Lo co:
y TFO c i 1 sin
. 48)
v ilkz ~at + a (x-aj (
BY =--— kBy cos ra/Z} e E .
x w r )i sin
r#0
v Jkz ~wt + a_ (x -2)
B Voo Z _cﬂ_ P {Fos, ra/Z‘} e 1[ t :l
z w r (U sin
r#0
and in the vacuum region x < 0
v .
YV - Z B, p {-co.s ra/Z} el(kz -wt -a p x)
y 50 © r|-i sin
v kB cos i(kz -wt -a . x)
By = —Z) = P. {.i sin ra/£> e i (49)
r¥
v .
B Y = —Z 2B P {FO§ ra/Z} el(kz -wt - apx)
z 7 w r (—1 sin
6. Modes in a Plasma Bounded by a Neutral Gas
We now assume that the regions x > a, x < 0 contain neutral gas
with pressure and density equal to that of the plasma, so that we may write
pP = pY = p,
. (50)
Po = Po = Po

The acoustic velocity o is assumed to have the same value in the plasma
and the neutral gas.

The unit normal to the static boundaries is
0

n = (+1, 0, 0) on x =
—0 — a



and the zero order boundary condition (14) (or (15)) are satisfied by taking

v

_ P _
Eo - 12o = (0, 0, Bo)

In this case the neutral gas particle pressure supports the plasma particle

pressure.

Since n, - Eo = 0, first order boundary conditions (17} apply. By

use of equations (19), (21), and (29) these may be reduced to

vP =gV
xX xX
v
z =0 (51)
v _ Bg v P
y c x
B_.B, B_B,P
pv+__0__.z;:pp+_o__z_
4+ 4w

on x = 0, 2 for variations of the form el(kz - wt)

The principal modes of equations (24) and the TE modes of equations
(27) are to be matched to the electromagnetic and acoustic neutral gas
modes given by (28), (29), and (31), under the requirement that the neutral
gas modes are to be outgoing or damped. Therefore the sign of a is chosen

as in the vacuum case, while the sign of § is chosen such that if c,..\z/k2 > coz,
g > 0 while if w2/k% < ¢ .2, ip < O.

o ? Under this sign convention the acoustic

waves in the region x> a vary as el(k'z w4 ﬁx)’ while those in the region

x < 0 vary as eHkz —wt -fx)

For the principal modes

P _ P _ pP _
vx-p-Bz-O

throughout the plasma. Heuce from (51)

.

vxv—O

E,’ =0

£V - 0 on x =0, a
y

pv+B°E‘:l_Z = 0
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and from (28), (29), and (31) this implies that there are no waves in the
neutral gas associated with the principal modes, which have the form given

in equations {36).

Next we consider the TE modes. Since Ezv = 0 on x = 0,a, we may
set
Y =EV:- R vo_ oo
x z y

throughout the neutral gas.

For the remaining variables we consider first the region x > a. On

x = a, from (27) and (51)

v o -iw(t -z/VA') . r . _
v, =A, e + Y (A elf® 5 o-iray Sikz -wt) (52)
T -r
r#£0 '
-iw(t -2/ V') ) . . _
EY =Bop e +) Boqa ofTrya oI ilkEout) g
y c "ol 7 [& r -r
v . B,B —i(t ~zfcy) 2 .22
i—z. = ._.
P+ == COpOAOZe ol 4+ 2 w -Co VAk
r# w(w - k )
(Ar Jira —A_re-lra) ei(kz -wt) (54)
From (29) and (3]) the fields for x > a may be wriiten as
- t- + o - + 1 'y _
Eyv -D_ e it ~z/Vy ") 1u01x+ D_,e it -z/cg) 1aozx+; Drel(kz wt + apx)
i (55)

B Y =L£%al p le‘i‘*’(t -z/Vy') T tag1x + C202 -iwft -z/co) +iao2x

Z w o w 02

i(kz -wt
+; cap p M erx) (g
FE

and
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Vo4 e—iw(t -z/VA') +ipo1 x

it - ilkz ~wt + ip_x)
P D S -
T#
vY = Lol d e-im(t -ZIVAI) tiPolx Br 4 i(kz -wt + Br x) (58)
x wp ol + e
o &0 “Po T

where . is defined as in Section 5,

2 _ 2f1 1
Por = (2752
o A

and w and k satisfy (25) for each value of r. The constants D. and dr are

to be determined. Comparison of coefficients of el(kz -wt) on x = a then

gives, from (52) - (58)

D, = 0
Dgp = 0 (59)
. . ia_ 2
D _ Bg (A e A A e Lra)e r
r c r -r
dol =0
. wp ira -ira -ig_a
d, = -B—ro— (Ar e + A__r e e r
and for consistency
Aol =0
ira -ira l: 2, 2 2 2 ;2,2
Ae + A_re . r|w (;_o thA ) —c, VA k] (61)
ira -ira = 2 s, 2
A e -A__e (ar V37 + @ /ﬂr)(w -c, k%)
This matching process must be repeated for the other boundary x = 0, as in
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the vacuum case. Note that the transverse wave for which r = 0, mz = (VA')ZkZ
cannot propagate in the plasma-neutral gas system, but that the acoustic wave
for which r = 0, wz = co2 k2 is able to propagate in this system.

From the consistency conditions for the two boundaries we find

2 ira 2 e—ira

and we may therefore set

-ira/2 i
Ao =B I 4 o B (62)

The consistency condition (61) then becomes

2 2 2 2.2
ir{fag;t ra/z} - lay V3" + 0"/Br)(w” = K7) (63)

wz (co2 + VAZ) —cOZVA‘2 K

which together with (26) determines the possible propagating modes. From

(26) we see that for real « and k, r is either real or pure imaginary and

r(tcant ra/Z} is therefore always real. Consistent solutions of (26) and
~Co
{63) are thus only possible if (‘IrVAZ + wz/pr) is imaginary i. e, if

wzlkz < c 2
o

The fields corresponding to these TE modes are as follows:

Within the plasma, for 0 < x < a

P _ S cos _ i(kz -~wt)
Y T %0 Prdisim F (x a/Z} €
iw(t -z/cy) 2 . i(kz ~wt)
P _ A © rkcg i sin
v, 02° +1~Z¢ 2077 Pr Qeos TX-af2)ge
o K
i(kz -wt) *
P_ B_k cos i
By = 5 —— P {i sin r(x -a/Z)} e

P _ r By i sin ) ] i(kz -wt)
B, 1; - P, {cos r(x -a/2)} e

EP = Y Bo_ P, [COS r(x —a/2)‘} ei(kz -wt)

y ‘I_';O (o i sin

2k



P _ -iw(t ~z/cg) _ 2 (i sin i(kz -wt)
PP = o p, A e o +g T wpo €y P leos r(x -a/2)}e
Ir=

w® -c 2K
y (64)
jyp = Z) le%% w? —c2'(k2 + rz) P, {icossi’n r(x —a/Z)} e Hkz -ot) cont,
r#
In the neutral gas region x> a
i [kz -t + a. {x -aﬂ
v o Bo cos '} l_ r
Ey - erO [ pr{isin ra/2 ¢
v k B, cos / “} i E{Z ~wt ta.(x ---a)J
B, = —;; — P. 9 in F2 27 e (65)
ilkz -wt + -a
B Y - 2rBg {Fos. ra/ 2} ell: kel )]
z 50 w r (i sin
and
. kz -wt+p .(x -aﬂ
v -iw(t ~z/cp) wpo cos { r
P - “oPo AoZ € +r9€ Br Pr{i sin ra/2p e

(66)

v 'V o= Z P {.COS. r-a/Z} eil?z Wt F Prix --a]
x 5 r (i sin
N\ i[kz ~wt + B px —a]

v o -iw(t -z/cg) k cos
Vo T AoZ N +§jo Pr Pr i sin ra./Z.] €
r=

and similarly for the neutral gas region x < 0,
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